Measurement of flow and volume of blood

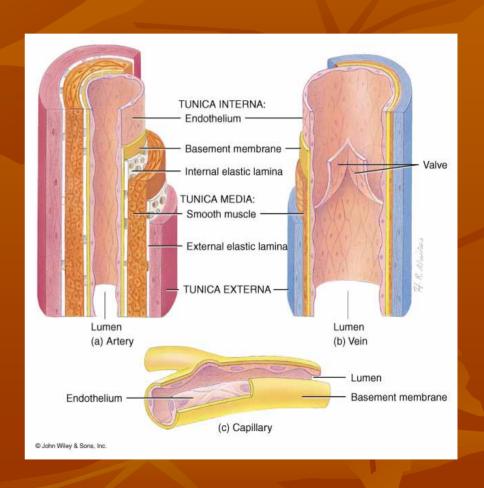
Nguyen Phan Kien ングイェン ファン キエン

Content

- Reasons
- Overview of research object (circulation system)
- Indicator-dilution method that uses continuous infusion
- Indicator-dilution method that uses rapid injection
- Electromagnetic flowmeters

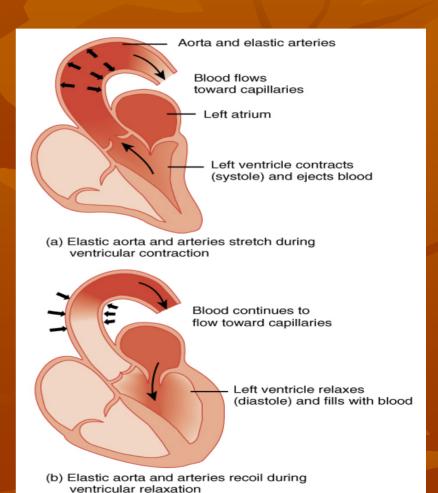
Reasons

Reasons:


- Measurement of concentration of Oxygen and other nutrients in the cell too difficult
 - using measurement blood flow and change in blood volume
 - If blood flow difficult to measure => use blood pressure
 - If blood pressure is difficult => ECG measurement
- The aim of finding some diseases in human body (do not know exactly which the diseases are)
- All steps above are related to each other through different levels.
- Working mainly with blood vessels

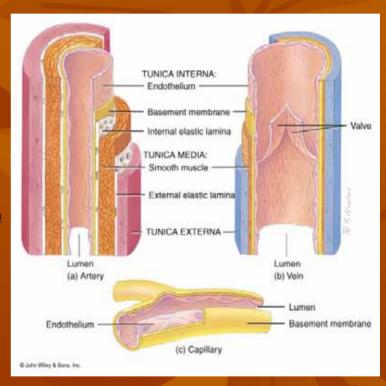
Blood vessel structure

- Five types of blood vessels:
 - Arteries
 - Arterioles
 - Capillaries
 - Venules
 - Veins
- Larger blood vessels served by own blood vessels located within their walls
 - Vasa vasorum

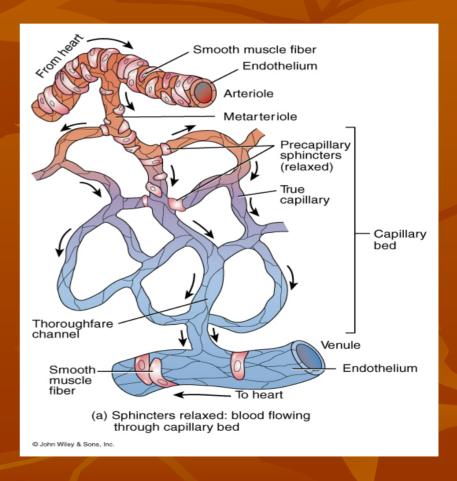

Vessel structure

- Arterial walls have 3 tunics
 - tunica interna
 - Endothelium
 - Basement membrane
 - Internal elastic lamina
 - tunica media
 - Thickest layer
 - Elastic fibres
 - Smooth muscle
 - External elastic lamina (only in muscular arteries)
 - tunica externa
 - Elastic and collagen fibres

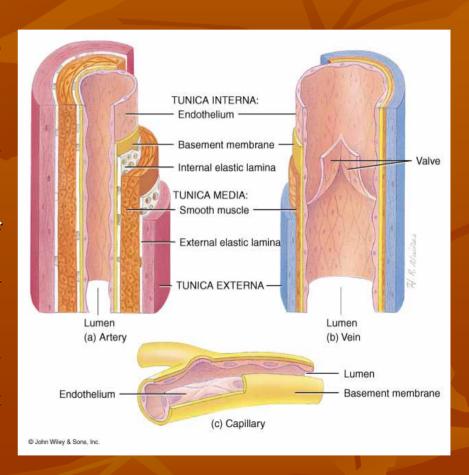
Arteries


- Elastic (conducting) arteries
 - Largest diameter arteries
 - Tunica media contains high proportion of elastic fibres
 - Store elastic energy
 - Helps keep blood moving during diastole
 - "conduct" blood from heart to smaller muscular arteries

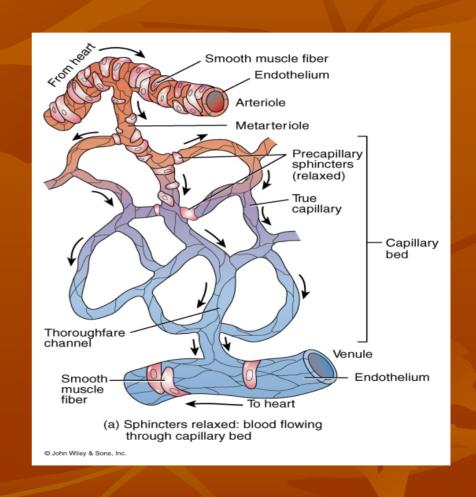
@ John Wiley & Sons, Inc.


Arteries

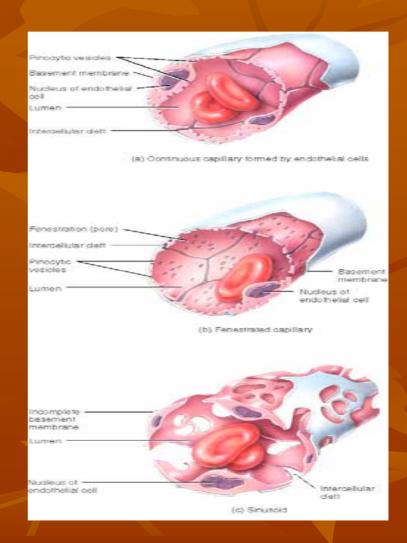
- Muscular (distributing) arteries
 - Medium sized arteries
 - Tunica media contains
 - High proportion of smooth muscle
 - Very active in vasoconstriction and vasodilation
 - Distribute blood to various parts of body


Arterioles

- Arterioles
 - small, almost microscopic arteries
 - deliver blood to capillaries
 - key regulators of systemic vascular resistance
- Metarterioles
 - Emerge from arterioles
 - Supply capillary beds
 - Distal end has no smooth muscle
 - thoroughfare channel


Capillaries

- Microscopic vessels (microcirculation)
 - Distribution varies with metabolic activity of tissue
 - Prime function is exchange of nutrients and wastes via interstitial fluid
 - Walls consist of only endothelium and basement membrane

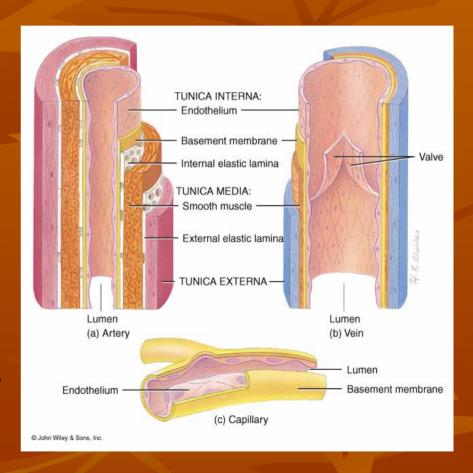

Capillaries

- True capillaries
 - Emerge from arterioles or metarterioles
 - flow regulated by precapillary sphincter
 - Flow intermittent (vasomotion)
 - Caused by alternating
 contraction/relaxation of
 metarterioles and pre-capillary
 sphincters
 - RBC move in single file

Capillary exchange

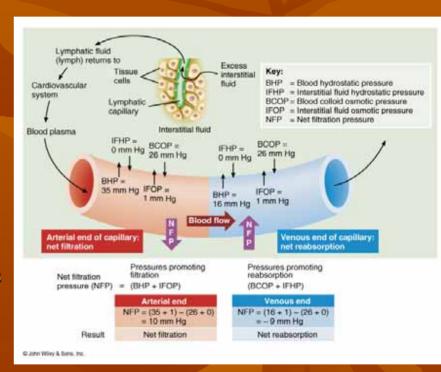
- Three different types of capillaries
 - Continuous capillaries
 - uninterrupted lining
 - Fenestrated capillaries
 - many fenestrations/pores
 - Sinusoidal capillaries
 - large fenestrations and intercellular clefts
 - incomplete basement membrane

Venules


Small veins formed from merging of several capillaries

Venules merge to form veins

Veins


Veins:

- Composed of essentially same 3 tunics as arteries
 - Tunica interna thinner
 - Tunica media thinner
 - Less smooth muscle and elastic fibres
 - Tunica externa
 - Thickest layer collagen and elastic fibres
 - Lack elastic lamina of arteries
- Many contain valves to prevent backflow of blood.

Capillary exchange

- Substances enter and leave capillaries by three methods:
 - diffusion (most important)
 - transcytosis (vesicular transport)
 - bulk flow (filtration and absorption)
 - Important for regulation of relative volumes of blood and interstitial fluid
 - Driven by balance between hydrostatic and osmotic pressures (Net filtration pressure)
 - Volume of fluid and and solute reabsorbed normally almost same as volume filtered (Starling's Law of the Capillaries)

Dynamics of Blood Circulation

- Interrelationships between
 - Pressure
 - Flow
 - Resistance
 - Control mechanisms that regulate blood pressure
 - Blood flow through vessels

Laminar and Turbulent Flow

Laminar flow

- Streamlined
- Outermost layer moving slowest and center moving fastest

Turbulent flow

- Interrupted
- Rate of flow exceeds critical velocity
- Fluid passes a constriction, sharp turn, rough surface

Indicator-dilution method that uses continuous infusion

Concentration

- Main parameter using to identify the disease.
- Define by equation: $C = m_0/V$
 - In which: m0 is a quantity of an indicator, V is the blood volume
- When the quantity is increased so the flow can calculated from the equation below:

$$F = \frac{dV}{dt} = \frac{dm/dt}{\Delta C}$$

■ It means that the changing of quantity of indicator with changed volume per unit of time

Indicator-dilution method that uses continuous infusion

FICK technique

- Using for measurement cardiac output
 - Definition: volume of blood pumped by the heart per min / measure volume displacement
 - "the total uptake or release of a substance by an organ is the product of the blood flow through that organ and the arteriovenous concentration difference of the substance"

CardiacOutput =
$$\frac{\text{Consumtion of } O_2(liters / \text{min})}{\text{different concentration of } O_2 \text{ per unit of time } (liters / \text{min})}$$

 Limited by cumbersome equipment, sampling errors, need for invasive monitoring and steady-state haemodynamic and metabolic conditions

Indicator-dilution method that uses continuous infusion

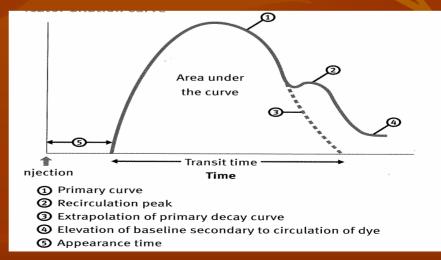
- FICK technique
 - Equation:

$$F = \frac{dm/dt}{C_a - C_v}$$

- F: blood flow, liters/min
- dm/dt= consumption of oxygen, liters/min
- Ca= arterial concentration of oxygen, liters/liter
- Cv=venous concentration of oxygen, liters/liter
- This technique is nontoxic and the presence of catheter causes a negligible change in cardiac output.

Principle:

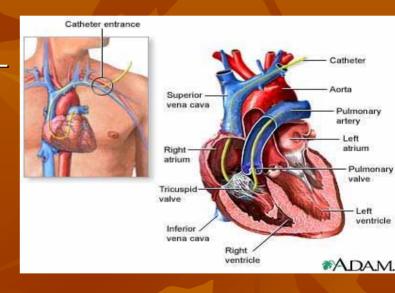
- Bolus of indicator is rapidly injected into the vessel and the variation in downstream concentration of the indicator versus time is measured until the bolus has passed.
- Equation:


$$F = \frac{m}{\int\limits_{0}^{t_{1}} \left[\Delta C(t) \right] dt}$$

Still following the main definition.

- Common method
 - Dye dilution
 - Injected thought catheter
 - 50% of the dye is excreted by the kidneys in the first 10 min so repeat determinations are possible.

Shape of measured curve can provide additional diagnostic

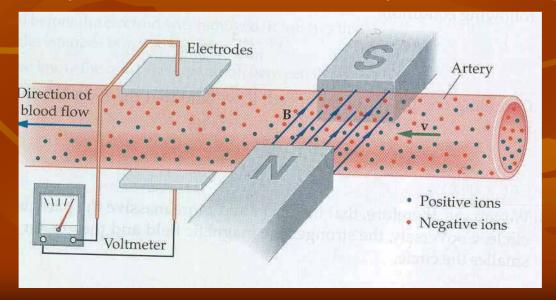

information

- Thermodilution
 - CO derived from modification Stewart-Hamilton

conservation of heat equation

- Q= <u>V x Di x Si[Tb-Ti] x 60</u> dT x t x Db x Sb x 1000
 - V volume of injectate
 - D densities
 - S specific heats
 - T temp
 - dT mean temp change
 - t duration of temp change
 - 60/1000 = scaling factor convert CO into 1/min

- Common method
 - Thermo dilution
 - Inject bolus of cold saline as an indicator.
 - Equation:


$$F = \frac{Q}{\rho_b c_b \int_0^{t_1} \Delta T_b(t) dt} \left(m^3 / s \right)$$

- Q= heat content of injectate, $J(=V_i\Delta T_i\rho_ic_i)$
- ρ_b = density of blood, kg/m3
- Cb= specific heat of blood, J/(kg.K)

Electromagnetic Flowmeters

Principle:

- Moving ions in the blood are deflected by magnetic force.
- Positive ions are deflected down, negative ions are deflected up.
- This separation of charge creates an electric field E pointing up.
- There is therefore a potential difference V = Ed between the two electrodes.
- The velocity of blood flow is measured by v = E/B.

Electromagnetic Flowmeters

- In details, the formula for induced electromagnetic field is given by Faraday's law of induction: L_1 $e = \int u \times B \cdot dL$
 - B= magnetic flux density, T
 - L= length between electrodes, m
 - U= instantaneous velocity of blood, m/s
- Error factor:
 - The varying drops in resistance within the conductive blood and surrounding tissues.
 - Shunting effects of the wall cause variable error (physiology structure of vessels)
 - The effect of conductivity between in the wall and outside the wall.
 - The not uniform of magnetic-flux in transverse plan
 - The not uniform of magnetic-flux along the axis

Electromagnetic Flowmeters

DC Flowmeter

- Using dc magnetic field
- Some disadvantages: 3 reasons
 - Noise have the same order as flow signal so can not remove
 - Content of ECG and waveform frequency are the same so interference
 - Noise at low freq is large so have poor SNR.

AC Flowmeter

- Using ac magnetic field though effect of transformers.
- Some disadvantages but can solve by using different techniques.