20140413153704
Ai theo dõi trang này
Mời quảng cáo

Phương pháp tọa độ trong không gian trong các kì thi tốt nghiệp THPT

Bài từ Tủ sách Khoa học VLOS

TN THPT GDTX, 2010-2011

Trong không gian với hệ tọa độ Oxyz cho điểm A(0; 1; 4) và đường thẳng d có phương trình \begin{cases}x = 1 + t \\ y = 2 - 3t \\ z = -2 + 2t\end{cases}

1) Viết phương trình mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng d

2) Tìm tọa độ hình chiếu vuông góc của điểm A trên đường thẳng d

TN THPT CT Nâng cao, 2010-2011

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0; 0; 3), B(-1; -2; 1) và C(-1; 0; 2)

1) Viết phương trình mặt phẳng (ABC)

2) Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A.

TN THPT CT Chuẩn, 2010-2011

Trong không gian với hệ tọa độ Oxyz, cho điểm A(3; 1; 0) và mặt phẳng (P) có phương trình 2x + 2y - z + 1 = 0

1) Tính khoảng cách từ điểm A đến mặt phẳng (P). Viết phương trình mặt phẳng (Q) đi qua điểm A và song song với mặt phẳng (P).

2) Xác định tọa độ hình chiếu vuông góc của điểm A trên mặt phẳng (P)

TN THPT CT Nâng cao, 2009-2010

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ có phương trình \frac x 2 = \frac{y + 1}{-2} = \frac{z-1}{1}

a) Tính khoảng cách từ điểm O đến đường thẳng Δ

b) Viết phương trình mặt phẳng chứa điểm O và đường thẳng Δ

TN THPT CT Chuẩn, 2009-2010

Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(1; 0; 0), B(0; 2; 0) và C(0; 0; 3).

a) Viết phương trình mặt phẳng đi qua A và vuông góc với đường thẳng BC.

b) Tìm tọa độ tâm mặt cầu ngoại tiếp tứ diện OABC.

TN 2008-2009, CT Chuẩn

Trong không gian Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình:

(S): (x − 1)2 + (y − 2)2 + (z − 2)2 = 36 và (P): x + 2y + 2z + 18 = 0.

1) Xác định toạ độ tâm T và tính bán kính của mặt cầu (S). Tính khoảng cách từ T đến mặt phẳng (P).

2) Viết phương trình tham số của đường thẳng d đi qua T và vuông góc với (P). Tìm toạ độ giao điểm của d và (P).

TN 2008-2009, CT Nâng cao

Trong không gian Oxyz, cho điểm A(1; - 2; 3) và đường thẳng d có phương trình \frac{x +1}{2}=\frac{y-2}{1}=\frac{z + 3}{-1}

1) Viết phương trình tổng quát của mặt phẳng đi qua điểm A và vuông góc với đường thẳng d.

2) Tính khoảng cách từ điểm A đến đường thẳng d. Viết phương trình mặt cầu tâm A, tiếp xúc với d.

TN 2007-2008, KPB, lần 2

Trong không gian với hệ tọa độ Oxyz, cho điểm M ( -2; 1; - 2 ) và đường thẳng d có phương trình \frac{x -1}{2}=\frac{y +1}{-1}=\frac{z}{2}

1. Chứng minh rằng đường thẳng OM song song với đường thẳng d.

2. Viết phương trình mặt phẳng đi qua điểm M và vuông góc với đường thẳng d.

TN 2007-2008, KPB, lần 1

Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) và mặt phẳng (α) có phương trình 2x - 3y + 6z + 35 = 0.

1) Viết phương trình đường thẳng đi qua điểm M và vuông góc với mặt phẳng (α).

2) Tính khoảng cách từ điểm M đến mặt phẳng (α). Tìm tọa độ điểm N thuộc trục Ox sao cho độ dài đoạn thẳng NM bằng khoảng cách từ điểm M đến mặt phẳng (α).

TN 2007-2008, Ban KHTN, lần 2

Trong không gian với hệ tọa độ Oxyz, cho các điểm M (1; -2; 0), N (-3; 4; 2) và mặt phẳng (P) có phương trình 2x + 2y + z - 7 = 0.

1. Viết phương trình đường thẳng MN.

2. Tính khoảng cách từ trung điểm của đoạn thẳng MN đến mặt phẳng (P).

TN 2007-2008, Ban KHXH, lần 2

Trong không gian với hệ tọa độ Oxyz, cho điểm A (2; - 1; 3) và mặt phẳng (P) có phương trình x - 2y - 2z - 10 = 0.

1. Tính khoảng cách từ điểm A đến mặt phẳng (P).

2. Viết phương trình đường thẳng đi qua điểm A và vuông góc với mặt phẳng (P).

TN 2007-2008, Ban KHXH, lần 1

Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1; 4; -1), B(2; 4; 3) và C(2; 2; -1).

1) Viết phương trình mặt phẳng đi qua A và vuông góc với đường thẳng BC.

2) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

TN 2007-2008, Ban KHTN, lần 1

Trong không gian với hệ tọa độ Oxyz, cho điểm A(3; - 2; - 2) và mặt phẳng (P) có phương trình 2x - 2 y + z - 1 = 0.

1) Viết phương trình đường thẳng đi qua điểm A và vuông góc với mặt phẳng (P).

2) Tính khoảng cách từ điểm A đến mặt phẳng (P). Viết phương trình của mặt phẳng (Q) sao cho (Q) song song với (P) và khoảng cách giữa (P) và (Q) bằng khoảng cách từ điểm A đến (P).

TN 2007-2008, Bổ túc, lần 1

Trong không gian với hệ tọa độ Oxyz, cho điểm M(-1; 2; 3) và mặt phẳng (α) có phương trình x - 2 y + 2z + 5 = 0.

1) Viết phương trình đường thẳng đi qua điểm M và vuông góc với mặt phẳng (α).

2) Viết phương trình mặt phẳng (β) đi qua điểm M và song song với mặt phẳng (α). Tính khoảng cách giữa hai mặt phẳng (α) và (β).

TN 2007-2008, Bổ túc, lần 2

Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; -2; 0) và đường thẳng d có phương trình \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{3}.

1) Tìm tọa độ giao điểm của đường thẳng d với mặt phẳng có phương trình 2x - y + z - 7 = 0.

2) Viết phương trình mặt phẳng đi qua điểm M và vuông góc với đường thẳng d.

TN 2006-2007, Ban KHXH, lần 1

Trong không gian với hệ tọa độ Oxyz, cho điểm E(1; 2; 3) và mặt phẳng (α) có phương trình x + 2y - 2z + 6 = 0.

1. Viết phương trình mặt cầu (S) có tâm là gốc tọa độ O và tiếp xúc với mặt phẳng (α).

2. Viết phương trình tham số của đường thẳng (Δ) đi qua điểm E và vuông góc với mặt phẳng (α).

TN 2006-2007, Ban KHTN, lần 1

Trong không gian với hệ tọa độ Oxyz, cho điểm M(-1; -1; 0) và mặt phẳng (P) có phương trình x + y - 2z - 4 = 0.

1) Viết phương trình mặt phẳng (Q) đi qua điểm M và song song với mặt phẳng (P).

2) Viết phương trình tham số của đường thẳng (d) đi qua điểm M và vuông góc với mặt phẳng (P). Tìm tọa độ giao điểm H của đường thẳng (d) với mặt phẳng (P).

TN 2006-2007, Ban KHTN, lần 2

Trong không gian với hệ tọa độ Oxyz, cho hai điểm E(1; -4; 5) và F(3; 2; 7).

1) Viết phương trình mặt cầu đi qua điểm F và có tâm là E.

2) Viết phương trình mặt phẳng trung trực của đoạn thẳng EF.

TN 2006-2007, Ban KHXH, lần 2

Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(1; 0; 2), N(3; 1; 5) và đường thẳng (d) có phương trình \begin{cases}x = 1+ 2t \\ y = -3+t \\ z = 6 -t\end{cases}

1) Viết phương trình mặt phẳng (P) đi qua điểm M và vuông góc với đường thẳng (d).

2) Viết phương trình tham số của đường thẳng đi qua hai điểm M và N.

TN 2006-2007, KPB, lần 1

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d) có phương trình \frac{x-2}{1} = \frac{y+1}{2} = \frac{z-1}{3} và mặt phẳng (P) có phương trình x - y + 3z + 2 = 0.

1) Tìm tọa độ giao điểm M của đường thẳng (d) với mặt phẳng (P).

2) Viết phương trình mặt phẳng chứa đường thẳng (d) và vuông góc với mặt phẳng (P).

TN 2006-2007, KPB, lần 2

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng (d) và (d') lần lượt có phương trình

(d): \frac{x-1}{1}=\frac{y+2}{2}=\frac{z-1}{1} và (d'): \begin{cases}x=-1+t\\ y = 1-2t \\ z = -1 + 3t\end{cases}

1) Chứng minh rằng hai đường thẳng (d) và (d') vuông góc với nhau.

2) Viết phương trình mặt phẳng đi qua điểm K(1; -2; 1) và vuông góc với đường thẳng (d').

TN 2006-2007, Bổ túc, lần 1

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0; 2; 1), B(1; -1; 3) và mặt phẳng (P) có phương trình 2x + y + 3z = 0.

1) Viết phương trình tham số của đường thẳng AB.

2) Tìm tọa độ giao điểm M của đường thẳng AB với mặt phẳng (P).

TN 2006-2007, Bổ túc, lần 2

Trong không gian với hệ tọa độ Oxyz, cho ba điểm E(1; 0; 2), M(3; 4; 1) và N(2; 3; 4).

1) Viết phương trình chính tắc của đường thẳng MN.

2) Viết phương trình mặt phẳng đi qua điểm E và vuông góc với đường thẳng MN.

TN 2005-2006, Ban KHXH

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(-1; 1; 2), B(0; 1; 1), C(1; 0; 4).

1) Chứng minh tam giác ABC vuông. Viết phương trình tham số của đường thẳng AB.

2) Gọi M là điểm sao cho \overrightarrow{MB} = -2\overrightarrow{MC}. Viết phương trình mặt phẳng đi qua M và vuông góc với đường thẳng BC.

TN 2005-2006, Ban KHTN

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; 6).

1) Viết phương trình mặt phẳng đi qua ba điểm A, B, C. Tính diện tích tam giác ABC.

2) Gọi G là trọng tâm tam giác ABC. Viết phương trình mặt cầu đường kính OG.

TN 2005-2006, KPB

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 0; -1), B(1; 2; 1), C(0; 2; 0). Gọi G là trọng tâm tam giác ABC.

1) Viết phương trình đường thẳng OG.

2) Viết phương trình mặt cầu (S) đi qua bốn điểm O, A, B, C.

3) Viết phương trình các mặt phẳng vuông góc với đường thẳng OG và tiếp xúc với mặt cầu (S).

TN 2004-2005, KPB

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 − 2x + 2y + 4z − 3 = 0 và hai đường thẳng

(\Delta_1):\ \begin{cases}x + 2y - 2 = 0 \\ x - 2z = 0\end{cases},\ (\Delta_2): \frac{x-1}{-1}=\frac{y}{1}=\frac{z}{-1}

1) Chứng minh (Δ1) và (Δ2) chéo nhau.

2) Viết phương trình tiếp diện của mặt cầu (S), biết tiếp diện đó song song với hai đường thẳng (Δ1) và (Δ2).

TN 2003-2004, KPB

Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1; -1; 2), B(1; 3; 2), C(4; 3; 2), D(4; -1; 2).

1) Chứng minh rằng A, B, C, D là bốn điểm đồng phẳng.

2) Gọi A' là hình chiếu vuông góc của điểm A trên mặt phẳng Oxy. Hãy viết phương trình mặt cầu (S) đi qua bốn điểm A', B, C, D.

3) Viết phương trình tiếp diện (α) của mặt cầu (S) tại điểm A'.

TN 2003-2004, Bổ túc

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình:

(P): x + 9y + 5z + 4 = 0 và (d): \begin{cases}x = 1 + 10t \\ y = 1 + t \\ z = -1 - 2t\end{cases} với t \in R

1) Tìm tọa độ giao điểm A của đường thẳng d với mặt phẳng (P).

2) Cho đường thẳng d1 có phương trình \frac{x-2}{31} = \frac{y-2}{-5} = \frac{z+3}{1}. Chứng minh hai đường thẳng d1 và d chéo nhau. Viết phương trình mặt phẳng (Q) chứa đường thẳng d và song song với đường thẳng d1.

3) Viết phương trình chính tắc của đường thẳng Δ là giao tuyến của hai mặt phẳng (P) và (Q).

TN 2002-2003

Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A, B, C, D có tọa độ xác định bởi các hệ thức:

A=(2; 4; -1),\ \overrightarrow{OB}=\vec{i}+4\vec j - \vec k,\ C=(2; 4; 3),\ \overrightarrow{OD}=2\vec i + 2\vec j - \vec k

1) Chứng minh rằng AB ⊥ AC, AC ⊥ AD, AD ⊥ AB. Tính thể tích khối tứ diện ABCD.

2) Viết phương trình tham số của đường vuông góc chung Δ của hai đường thẳng AB và CD. Tính góc giữa hai đường thẳng Δ và mặt phẳng (ABCD).

3) Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D. Viết phương trình tiếp diện (α) của mặt cầu (S) song song với mặt phẳng (ABD).

TN 2001-2002

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y + z - 1 = 0. Mặt phẳng (P) cắt các trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C.

1. Tìm tọa độ A, B, C. Viết phương trình giao tuyến của (P) với các mặt tọa độ. Tìm tọa độ giao điểm D của đường thẳng (d):  \begin{cases} x + y - 2 =0 & \mbox{ } \\ 2x - y + z - 1 =0 & \mbox{ } \end{cases} với mặt phẳng Oxy. Tính thể tích tứ diện ABCD.

2. Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD. Viết phương trình đường tròn ngoại tiếp tam giác ACD. Xác định tâm và bán kính của đường tròn đó.

TN 2000-2001

Trong không gian với hệ tọa độ Oxyz, cho \,A(1;0;0), B(1;1;1)\,C\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right).

1) Viết phương trình mặt phẳng (P) vuông góc với OC tại C. Chứng minh O, B, C thẳng hàng. Xét vị trí tương đối của mặt cầu (S) tâm B, bán kính \,R=\sqrt{2} với mặt phẳng (P).

2) Viết phương trình tổng quát của đường thẳng d là hình chiếu vuông góc của đường thẳng AB lên mặt phẳng (P).

TN 1999-2000

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - 3y + 4z - 5 = 0 và mặt cầu (S): x2 + y2 + z2 + 3x + 4y − 5z + 6 = 0

1) Tìm tọa độ tâm I và bán kính của mặt cầu (S).

2) Tính khoảng cách từ I tới mặt phẳng(P), từ đó suy ra rằng (P) cắt mặt cầu theo một đường tròn (C). Hãy tính tọa độ tâm H và bán kính r của (C).

TN 1998-1999

Trong không gian với hệ tọa độ Oxyz, cho hình hộp chữ nhật có các đỉnh A(3;0;0), B(0;4;0), C(0;0;5), O(0;0;0) và đỉnh D là đỉnh đối diện của O.

1) Tìm tọa độ điểm D và viết phương trình mặt phẳng (ABD).

2) Viết phương trình đường thẳng (d) qua C và vuông góc với mặt phẳng (ABD).

3) Tính khoảng cách từ C tới mặt phẳng (ABD).

TN 1997-1998

Trong không gian với hệ tọa độ Oxyz, cho A(2;0;0), B(0;4;0), C(0;0;4).

1) Viết phương trình mặt cầu qua 4 điểm O, A, B, C. Tìm tọa độ tâm I và độ dài bán kính của mặt cầu.

2) Viết phương trình mặt phẳng (ABC). Viết phương trình tham số của đường thẳng qua I và vuông góc với mặt phẳng (ABC).

TN 1996-1997

Trong không gian với hệ tọa độ Oxyz, cho A(3;-2;-2), B(3;2;0), C(0;2;1) và D(-1;1;2).

1) Viết phương trình mặt phẳng qua B, C, D. Suy ra ABCD là tứ diện.

2) Viết phương trình mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD). Tìm tọa độ tiếp điểm.

 
Gõ tiếng Việt có dấu:
(Hỗ trợ định dạng wikitext)
Công cụ cá nhân