
Chứng minh toán học
Trong toán học, một chứng minh là một cách trình bày thuyết phục (sử dụng những chuẩn mực đã được chấp nhận trong lĩnh vực đó) rằng một phát biểu toán học là đúng đắn[1]. Chứng minh có được từ lập luận suy diễn, chứ không phải là tranh luận kiểu quy nạp hoặc theo kinh nghiệm. Có nghĩa là, một chứng minh phải biểu diễn cho thấy một phát biểu là đúng với mọi trường hợp, không có ngoại lệ. Một mệnh đề chưa được chứng minh nhưng được chấp nhận đúng được gọi là một phỏng đoán.
Phát biểu đã được chứng minh thường được gọi là định lý[1]. Một khi định lý đã được chứng minh, nó có thể được dùng làm nền tảng để chứng minh các phát biểu khác. Một định lý cũng có thể được gọi là bổ đề, đặc biệt nếu nó được dự định dùng làm bước đệm để chứng minh một định lý khác.
Mục lục
[ẩn]- 1 Lịch sử
-
2
Các
phương
pháp
chứng
minh
- 2.1 Chứng minh trực tiếp
- 2.2 Chứng minh bằng quy nạp toán học
- 2.3 Chứng minh bằng chuyển vế
- 2.4 Chứng minh bằng phản chứng
- 2.5 Chứng minh bằng dẫn chứng
- 2.6 Chứng minh vét cạn
- 2.7 Chứng minh xác suất
- 2.8 Chứng minh tổ hợp
- 2.9 Chứng minh không xây dựng
- 2.10 Chứng minh bằng hình ảnh
- 2.11 Chứng minh cơ bản
- 2.12 Chứng minh hai cột
- 2.13 Chứng minh thống kê trong toán học thuần túy
- 2.14 Chứng minh với sự hỗ trợ của máy tính
- 3 Tham khảo
- 4 Liên kết ngoài
- 5 Liên kết đến đây
Lịch sử[sửa]
Các tranh luận về sự hợp lý bằng cách sử dụng các vật dụng có sẵn như hình ảnh hay vật tương tự là tiền đề cho các chứng minh toán học chính xác[2]. Sự phát triển của chứng minh toán học chủ yếu là sản phẩm của nền văn minh Hy Lạp. Thales (624–546 TCN) đã chứng minh một số định lý trong hình học. Eudoxus (408–355 TCN) và Theaetetus (417–369 TCN) đã công thức hóa các định lý nhưng không chứng minh. Aristoteles (384–322 TCN) nói rằng các định nghĩa cần được mô tả bằng những khái niệm đã biết. Euclid (300 TCN) đã bắt đầu từ những thuật ngữ chưa được định nghĩa là các tiên đề (các mệnh đề sử dụng những thuật ngữ chưa định nghĩa được giả thiết là hiển nhiên đúng, nguyên từ Hy Lạp là "axios" có nghĩa là "một thứ giá trị") và đã dùng những thứ này để chứng minh các định lý bằng luận lý suy diễn. Lý thuyết chứng minh hiện đại xem các chứng minh là những cấu trúc dữ liệu được định nghĩa một cách quy nạp. Người ta không còn giả thiết rằng các tiên đề lúc nào cũng "đúng đắn"; điều này cho phép các lý thuyết toán học được xây dựng song song nhau dựa trên những tập tiên đề khác nhau (Lý thuyết tập hợp tiên đề và Hình học phi Euclid là các ví dụ).
Các phương pháp chứng minh[sửa]
Chứng minh trực tiếp[sửa]
- Xem chi tiết: Chứng minh trực tiếp
Trong chứng minh trực tiếp[3], kết luận có được bằng cách phối hợp một cách lôgic các tiên đề, định nghĩa, và các định lý trước đó. Ví dụ, chứng minh trực tiếp có thể dùng để chứng minh rằng tổng của hai số nguyên chẵn luôn luôn là số chẵn:
-
Với
hai
số
nguyên
chẵn
bất
kỳ
và
ta có thể biểu diễn thành
và
qua hai số nguyên
và
nào đó, vì cả
và
đều là bội số của 2. Mà tổng
cũng là bội của 2, do đó theo định nghĩa, nó là số chẵn.
Bài chứng minh này sử dụng định nghĩa số nguyên chẵn, và luật phân phối.
Chứng minh bằng quy nạp toán học[sửa]
- Xem chi tiết: Quy nạp toán học
Trong cách chứng minh bằng quy nạp toán học'[4], đầu tiên "trường hợp cơ sở" sẽ được chứng minh, sau đó sẽ dùng một "luật quy nạp" để chứng minh (thường là vô tận) các trường hợp khác. Vì trường hợp cơ sở là đúng, tất cả các trường hợp khác cũng phải đúng, thậm chí nếu ta không thể chứng minh trực tiếp tất cả chúng là đúng vì số lượng vô tận của nó. Một dạng con của quy nạp là phương pháp xuống thang. Phương pháp xuống thang được dùng để chứng minh sự vô tỷ của căn bậc 2 của 2.
Nguyên tắc quy nạp toán học như sau: Cho N = { 1, 2, 3, 4,... } là tập các số tự nhiên và P(n) là một phát biểu toán học liên quan tới một số tự nhiên n thuộc N sao cho
- (i) P(1) là đúng, tức là, P(n) là đúng khi n = 1
- (ii) P(n + 1) là đúng bất cứ khi nào P(n) đúng, tức là, P(n) đúng thì với P(n + 1) cũng đúng.
Khi đó P(n) là đúng với mọi số tự nhiên n.
Các nhà toán học thường dùng cụm từ "chứng minh bằng quy nạp" để nói tắt cho chứng minh bằng quy nạp toán học[5]. Tuy vậy, thuật ngữ "chứng minh bằng quy nạp" cũng được dùng trong logic để nói đến một tranh luận sử dụng suy diễn quy nạp.
Chứng minh bằng chuyển vế[sửa]
Chứng minh bằng chuyển vế sẽ hình thành kết luận "nếu p thì q" bằng cách chứng minh phát biểu tương phản tương đương "nếu không q thì không p".
Chứng minh bằng phản chứng[sửa]
- Xem chi tiết: Chứng minh bằng phản chứng
Trong
chứng
minh
bằng
phản
chứng
(còn
được
gọi
là
reductio
ad
absurdum,
tiếng
La
tinh
có
nghĩa
là
"thu
giảm
đến
sự
vô
lý"),
người
ta
sẽ
chứng
minh
nếu
một
phát
biểu
nào
đó
xảy
ra,
thì
dẫn
đến
mâu
thuẫn
về
lôgic,
vì
vậy
phát
biểu
đó
không
được
xảy
ra.
Phương
pháp
này
có
lẽ
là
phương
pháp
phổ
biến
nhất
trong
chứng
minh
toán
học.
Một
ví
dụ
nổi
tiếng
về
cách
chứng
minh
phản
chứng
là
để
chứng
minh
là
một
số
vô
tỷ:
-
Giả
sử
là số hữu tỷ, ta sẽ biểu diễn được
trong đó a và b là các số nguyên khác không có ước chung lớn nhất là 1 (theo định nghĩa số hữu tỷ). Do đó,
. Bình phương hai vế cho ra 2b2 = a2. Vì vế trái chia hết cho 2, nên vế phải cũng phải chia hết cho 2 (vì chúng bằng nhau và đều là số nguyên). Do đó a2 là số chẵn, có nghĩa là a cũng phải là số chẵn. Dẫn đến ta có thể viết a = 2c, trong đó c cũng là số nguyên. Thay vào phương trình ban đầu cho ra 2b2 = (2c)2 = 4c2. Chia hai vế cho 2 ta được b2 = 2c2. Nhưng khi đó, tương tự như trên, b2 chia hết cho 2, nên b phải là số chẵn. Nhưng nếu a và b đều là số chẵn, chúng sẽ có chung một ước số là 2. Điều này trái với giả thuyết, do đó mà chúng ta buộc phải kết luận rằng
là số vô tỷ.
Chứng minh bằng dẫn chứng[sửa]
- Xem chi tiết: Chứng minh bằng dẫn chứng
Chứng minh bằng dẫn chứng, là đưa ra một dẫn chứng cụ thể với một thuộc tính nào đó để chứng minh rằng có tồn tại một thứ có tính chất như vậy. Ví dụ như Joseph Liouville đã chứng minh tồn tại số siêu việt bằng cách đưa ra một ví dụ rõ ràng.
Chứng minh vét cạn[sửa]
- Xem chi tiết: Chứng minh vét cạn
Trong chứng minh vét cạn, kết luận sẽ có được bằng cách chia nhỏ nó ra thành một số trường hợp hữu hạn và chứng minh mỗi trường hợp một cách riêng rẽ. Số trường hợp đôi khi rất lớn. Ví dụ như, cách chứng minh định lý bốn màu đầu tiên là một chứng minh vét cạn với 1.936 trường hợp. Cách chứng minh này còn gây tranh cãi vì đa số các trường hợp được kiểm chứng bằng chương trình máy tính, chứ không phải bằng tay. Cách chứng minh đã biết tới ngắn nhất của định lý bốn màu ngày nay vẫn có tới hơn 600 trường hợp.
Chứng minh xác suất[sửa]
- Xem chi tiết: Phương pháp xác suất
Chứng minh xác suất là cách chứng minh trong đó người ta đưa một ví dụ để cho thấy nó có tồn tại, với một độ tin cậy nào đó, bằng cách dùng các phương pháp của lý thuyết xác suất. Cái này không nên nhầm lẫn với một tranh luận về một định lý 'có thể' đúng. Loại suy diễn sau có thể gọi là 'tranh luận có vẻ đúng' và không phải là một chứng minh; trong trường hợp phỏng đoán Collatz ta có thể thấy nó cách xa một chứng minh đúng nghĩa như thế nào[6]. Chứng minh xác suất, cũng như chứng minh bằng dẫn chứng, là một trong nhiều cách chứng minh định lý sự tồn tại.
Chứng minh tổ hợp[sửa]
- Xem chi tiết: Chứng minh tổ hợp
Một chứng minh tổ hợp sẽ chứng minh sự tương đương của các cách biểu diễn khác nhau bằng cách cho thấy chúng dẫn đến cùng một đối tượng theo các cách khác nhau. Một song ánh giữa hai tập hợp thường được dùng để chứng minh rằng số biểu thức là bằng nhau.
Chứng minh không xây dựng[sửa]
- Xem chi tiết: Chứng minh không xây dựng
Một
chứng
minh
không
xây
dựng
(nonconstructive
proof)
sẽ
chứng
minh
một
đối
tượng
toán
học
nào
đó
phải
tồn
tại
(ví
dụ
"X
nào
đó
thỏa
mãn
f(X)"),
mà
không
giải
thích
làm
thế
nào
để
tìm
đối
tượng
đó.
Thông
thường,
nó
có
dạng
như
chứng
minh
phản
chứng
trong
đó
người
ta
chứng
minh
việc
không
tồn
tại
một
đối
tượng
là
không
xảy
ra.
Ngược
lại,
một
chứng
minh
xây
dựng
(chứng
minh
bằng
dẫn
chứng)
chứng
minh
rằng
một
đối
tượng
nào
đó
tồn
tại
bằng
cách
đưa
ra
phương
pháp
tìm
nó.
Một
ví
dụ
nổi
tiếng
về
chứng
minh
không
xây
dựng
là
chứng
minh
tồn
tại
hai
số
vô
tỷ
và
sao
cho
là
số
hữu
tỷ:
-
Hoặc
là một số hữu tỷ và như vậy đã chứng minh xong (với
), hoặc
là số vô tỷ và ta có thể viết
và
. Cho ra
, là dạng hữu tỷ của
Chứng minh bằng hình ảnh[sửa]
Mặc dù không phải là một cách chứng minh chính quy, một cách biểu diễn hình ảnh cho một định lý toán học đôi khi được gọi là "chứng minh không cần lời". Hình ảnh bên phải là ví dụ của một chứng minh bằng hình ảnh cổ xưa định lý Pythagoras trong trường hợp tam giác (3, 4, 5).
Chứng minh cơ bản[sửa]
- Xem chi tiết: Chứng minh cơ bản
Một chứng minh cơ bản là một chứng minh chỉ dùng các kỹ thuật cơ bản. Cụ thể hơn, thuật ngữ được dùng trong lý thuyết số để ám chỉ các chứng minh không sử dụng phân tích số phức. Đôi khi người ta cho rằng một số định lý, như định lý số nguyên tố, chỉ có thể chứng minh bằng toán học "cao cấp". Tuy nhiên, qua thời gian, nhiều trong số các kết quả này đã được chứng minh lại chỉ bằng các kỹ thuật cơ bản.
Chứng minh hai cột[sửa]
Một dạng cụ thể của chứng minh sử dụng hai cột song song thường dùng trong các lớp hình học cơ bản[7]. Chứng minh được viết theo dạng một loạt hàng phân thành hai cột. Tại mỗi dòng, cột bên trái chứa các mệnh đề (hai đôi khi gọi là phát biểu), còn cột bên phải là lời giải thích ngắn gọn mệnh đề đó là gì, một tiên đề, giả thuyết, hay có được từ dòng trên (hoặc đôi khi chỉ gọi là "suy diễn").
Chứng minh thống kê trong toán học thuần túy[sửa]
- Xem chi tiết: Chứng minh thống kê
Cụm từ "chứng minh thống kê" có thể được dùng như thuật ngữ hoặc một cách thông thường trong các lĩnh vực toán học thuần túy, như các lĩnh vực liên quan đến mật mã hóa, chuỗi hỗn loạn, và lý thuyết số xác suất và phân tích[8][9][10]. Nó ít được dùng để chỉ một chứng minh toán học trong ngành toán học có tên thống kê toán học.
Chứng minh với sự hỗ trợ của máy tính[sửa]
Cho đến thế kỷ thứ 20 người ta đã giả thiết rằng, trên nguyên tắc, tất cả các chứng minh đều có thể được một nhà toán học giỏi xác nhận sự đúng đắn của nó[2]. Tuy nhiên, ngày nay máy tính được dùng cả để chứng minh các định lý lẫn thực hiện các phép toán quá dài mà con người hoặc một nhóm người có thể kiểm tra nổi; cách chứng minh định lý bốn màu đầu tiên là một ví dụ về một cách chứng minh có sự hỗ trợ từ máy tính. Một số nhà toán học lo ngại rằng khả năng xảy ra lỗi trong một chương trình máy tính hoặc lỗi khi tính toán có thể khiến cho sự đúng đắn của các cách chứng minh bằng máy tính bị đặt dấu hỏi. Trên thực tế, cơ hội xảy ra lỗi để bác bỏ một chứng minh của máy tính có thể giảm thiểu bằng cách đưa vào sự trùng lặp và tự kiểm tra khi tính toán, và bằng cách phát triển nhiều cách tiếp cận và chương trình độc lập nhau.
Tham khảo[sửa]
- ↑ Nhảy lên tới: 1,0 1,1 Cupillari, Antonella. The Nuts and Bolts of Proofs. Academic Press, 2001. Page 3.
- ↑ Nhảy lên tới: 2,0 2,1 The History and Concept of Mathematical Proof, Steven G. Krantz. 1. 5 tháng 2 năm 2007
- Nhảy lên ↑ Cupillari, page 20.
- Nhảy lên ↑ Cupillari, page 46.
- Nhảy lên ↑ Proof by induction, University of Warwick Glossary of Mathematical Terminology
- Nhảy lên ↑ Tuy đa số các nhà toán học không cho rằng bằng chứng xác suất là một chứng minh toán học đúng nghĩa, một số nhà toán học và triết học đã tranh cãi rằng ít nhất thì một số loại bằng chứng xác suất (như giải thuật xác suất của Rabin để kiểm tra tính nguyên tố) cũng tốt như bất cứ chứng minh toán học đúng nghĩa nào. Ví dụ, xem Davis, Philip J. (1972), "Fidelity in Mathematical Discourse: Is One and One Really Two?" American Mathematical Monthly 79:252-63. Fallis, Don (1997), "The Epistemic Status of Probabilistic Proof." Journal of Philosophy 94:165-86.
- Nhảy lên ↑ Patricio G. Herbst, Establishing a Custom of Proving in American School Geometry: Evolution of the Two-Column Proof in the Early Twentieth Century, Educational Studies in Mathematics, Vol. 49, No. 3 (2002), pp. 283-312,
- Nhảy lên ↑ "trong lý thuyết số và đại số giao hoán... cụ thể là chứng minh thống kê của một bổ đề." [1]
- Nhảy lên ↑ "Hằng số π (hay, pi) có chuẩn tắc hay không là một vấn đề rắc rối không có cách biểu diễn lý thuyết chặt chẽ nào trừ một vài chứng minh thống kê"" (Derogatory use.)[2]
- Nhảy lên ↑ " những quan sát này cho thấy một chứng minh thống kê cho suy đoán Goldbach với xác suất thất bại giảm đi rất nhanh với E lớn" [3]
Liên kết ngoài[sửa]
- What are mathematical proofs and why they are important?
- 2πix.com: Logic Part of a series of articles covering mathematics and logic.
- How To Write Proofs by Larry W. Cusick
- How to Write a Proof by Leslie Lamport, and the motivation of proposing such a hierarchical proof style.
- Proofs in Mathematics: Simple, Charming and Fallacious
-
The
Seventeen
Provers
of
the
World,
ed.
by
Freek
Wiedijk,
foreword
by
Dana
S.
Scott,
Lecture
Notes
in
Computer
Science
3600,
Springer,
2006,
ISBN
3-540-30704-4.
Contains
formalized
versions
of
the
proof
that
is irrational in several automated proof systems.
- What is Proof? Thoughts on proofs and proving.
- ProofWiki.org An online compendium of mathematical proofs.
- planetmath.org A wiki style encyclopedia of proofs
- A lesson about proofs, in a course from Wikiversity