Chủ đề nóng: Phương pháp kỷ luật tích cực - Cổ học tinh hoa - Những thói hư tật xấu của người Việt - Công lý: Việc đúng nên làm - Giáo án Điện tử - Sách giáo khoa - Học tiếng Anh - Bài giảng trực tuyến - Món ăn bài thuốc - Chăm sóc bà bầu - Môi trường - Tiết kiệm điện - Nhi khoa - Ung thư - Tác hại của thuốc lá - Các kỹ thuật dạy học tích cực
- Dạy học phát triển năng lực - Chương trình giáo dục phổ thông
Tìm tổng cấp số nhân
Từ VLOS
Một cấp số nhân là một tập sắp thứ tự của số - hay còn gọi dãy các phần tử, được xây dựng bằng một hằng số. Ở cấp số nhân hữu hạn, có (ít nhất) một phần tử đầu và cuối có thể xác định. Bài viết này sẽ giúp bạn tìm tổng của bất kỳ cấp số nhân hữu hạn nào.
Các bước[sửa]
-
Tính
công
bội
của
dãy.
Công
bội
được
ký
hiệu
là
r.
Chiến
lược
của
bạn
là
tìm
r
dựa
trên
những
gì
đã
biết
về
dãy.
- Nếu biết phần tử thứ nhất và thứ hai, lấy phần tử thứ hai chia cho phần tử đầu tiên để tìm công bội.
- Nếu biết hai phần tử liên tiếp, chia phần tử đứng sau cho phần tử đứng trước.
- Nếu biết phần trăm được dùng để xây dựng các phần tử, công bội là 1 cộng biểu diễn ở dạng thập phân của số phần trăm đó. Ví dụ: 4%=1,04; 25%=1,25; 135%=2,35...
-
Xác
định
phần
tử
đầu
tiên
của
dãy.
Gọi
nó
là
a.
Có
khả
năng
bạn
dễ
dàng
xác
định
được
phần
tử
này.
Cũng
có
thể,
bạn
sẽ
cần
đến
những
thông
tin
khác
để
tìm
được
nó.
-
Nếu
không
biết
phần
tử
đầu
tiên
của
dãy
nhưng
đã
biết
công
bội,
phần
tử
cuối
và
số
các
phần
tử
trong
dãy,
bạn
có
thể
tìm
được
phần
tử
đầu
tiên
a
bằng
cách
giải
phương
trình
dưới
đây:
phần tử cuối = a (công bội ^ (số phần tử - 1))
hay
tn = arn - 1
-
Nếu
không
biết
phần
tử
đầu
tiên
của
dãy
nhưng
đã
biết
công
bội,
phần
tử
cuối
và
số
các
phần
tử
trong
dãy,
bạn
có
thể
tìm
được
phần
tử
đầu
tiên
a
bằng
cách
giải
phương
trình
dưới
đây:
-
Tìm
số
phần
tử
có
trong
dãy.
Gọi
n
là
số
phần
tử
có
trong
dãy.
Có
thể
bạn
chỉ
việc
đếm
số
phần
tử
nhưng
trong
phần
lớn
trường
hợp,
bạn
sẽ
phải
làm
nhiều
hơn
thế.
-
Nếu
không
biết
số
phần
tử
nhưng
đã
có
phần
tử
cuối
-
ký
hiệu
là
tn,
phần
tử
đầu
tiên
và
công
bội,
bạn
có
thể
tìm
n
bằng
phương
trình
sau:
phần tử cuối = phần tử đầu (công bội ^ (n-1))
hay
tn = arn - 1
-
Nếu
không
biết
số
phần
tử
nhưng
đã
có
phần
tử
cuối
-
ký
hiệu
là
tn,
phần
tử
đầu
tiên
và
công
bội,
bạn
có
thể
tìm
n
bằng
phương
trình
sau:
-
Tìm
tổng.
Đặt
Sn
là
tổng
của
dãy
cần
tìm.
Thay
giá
trị
đã
tìm
được
vào
phương
trình
sau:
tổng của dãy = phần tử đầu ( 1 - công bội ^ số phần tử) / (1 - công bội)
hay
Sn=a(1-rn)÷(1-r)